Selasa, 22 November 2011

Kapasitor

Kondensator

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Kondensator atau sering disebut sebagai kapasitor adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator memiliki satuan yang disebut Farad dari nama Michael Faraday. Kondensator juga dikenal sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini. Pertama disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Itali condensatore), berkenaan dengan kemampuan alat untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya. Kebanyakan bahasa dan negara yang tidak menggunakan bahasa Inggris masih mengacu pada perkataan bahasa Italia "condensatore", bahasa Perancis condensateur, Indonesia dan Jerman Kondensator atau Spanyol Condensador.
  • Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.
Polarized kondensator symbol 3.jpg Lambang kondensator (mempunyai kutub) pada skema elektronika.
  • Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju.
Capacitor symbol.jpg Lambang kapasitor (tidak mempunyai kutub) pada skema elektronika.
Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar. Pada masa kini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu elektronika disingkat dengan huruf (C).
Kapasitor dalam rangkaian elektronik

Kapasitansi

Satuan dari kapasitansi kondensator adalah Farad (F). Namun Farad adalah satuan yang terlalu besar, sehingga digunakan:
  • Pikofarad (pF) = 1\times10^{-12}\,F
  • Nanofarad (nF) = 1\times10^{-9}\,F
  • Microfarad (\mu\,F) = 1\times10^{-6}\,F
Kapasitansi dari kondensator dapat ditentukan dengan rumus:
C=\epsilon_0\epsilon_r\frac{A}{d}
C : Kapasitansi
\epsilon_0 : permitivitas hampa
\epsilon_r : permitivitas relatif
A : luas pelat
d :jarak antar pelat/tebal dielektrik
Adapun cara memperbesar kapasitansi kapasitor atau kondensator dengan jalan:
  1. Menyusunnya berlapis-lapis.
  2. Memperluas permukaan variabel.
  3. Memakai bahan dengan daya tembus besar.
Dielektrik Permitivitas
Permitivitas Relatif Dielektrik
Keramik rugi rendah 7
Keramik k tinggi 50.000
Mika perak 6
Kertas 4
Film plastik 2,8
Polikarbonat 2,4
Polistiren 3,3
Poliester 2,3
Polipropilen 8
Elektrolit aluminium 25
Elektrolit tantalum 35

Wujud dan Macam kondensator

Tipe Jangkauan Toleransi (%) Tegangan AC lazim (V) Tegangan DC lazim (V) Koefisien suhu (ppm/C) Frekuensi pancung fR (MHz) Sudut rugi (\tan\;\delta) Resistansi bocoran (Ω) Stabilitas
Karakteristik kondensator
Kertas 10 nF - 10 uF ± 10% 500 V 600 V 300 ppm/C 0,1 MHz 0,01 109 Ω lumayan
Mika perak 5 pF - 10 nF ± 0,5% - 400 V 100 ppm/C 10 MHz 0,0005 1011 Ω Baik sekali
Keramik 5 pF - 1 uF ± 10% 250 V 400 V 30 ppm/C 10 MHz 0,01 108 Ω Baik
Polystyrene 50 pF - 500 nF ± 1% 150 V 500 V -150 ppm/C 10 MHz 0,0005 1012 Ω Baik sekali
Polyester 100 pF - 2 uF ± 5% 400 V 400 V 400 ppm/C 1 MHz 0,001 1011 Ω Cukup
Polypropylene 1 nF - 100 uF ± 5% 600 V 900 V 170 ppm/C 1 MHz 0,0005 1010 Ω Cukup
Elektrolit aluminium 1 uF - 1 F ± 50% Terpolarisasi 400 V 1500 ppm/C 0,05 MHz 0,05 108 Ω Cukup
Elektrolit tantalum 1 uF - 2000 uF ± 10% Terpolarisasi 60 V 500 ppm/C 0,1 MHz 0,005 108 Ω Baik

Jenis kondensator

Berdasarkan kegunaannya kondensator dibagi dalam:
  1. Kondensator tetap (nilai kapasitasnya tetap tidak dapat diubah)
  2. Kondensator elektrolit (Electrolite Condenser = Elco)
  3. Kondensator variabel (nilai kapasitasnya dapat diubah-ubah)

Kondensator tetap

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Kondensator tetap ialah suatu kondensator yang nilainya konstan dan tidak berubah-ubah. Kondensator tetap ada tiga macam bentuk:
Bentuknya ada yang bulat tipis, ada yang persegi empat berwarna merah, hijau, coklat dan lain-lain. Dalam pemasangan di papan rangkaian (PCB), boleh dibolak-balik karena tidak mempunyai kaki positif dan negatif. Mempunyai kapasitas mulai dari beberapa piko Farad sampai dengan ratusan Nano Farad (nF). Dengan tegangan kerja maksimal 25 volt sampai 100 volt, tetapi ada juga yang sampai ribuan volt.
Contoh misal pada badannya tertulis = 203, nilai kapasitasnya = 20.000 pF = 20 nF = 0,02 µF.
Jika pada badannya tertulis = 502, nilai kapasitasnya = 5.000 pF = 5 nF = 0,005 µF
Pada dasarnya sama saja dengan kondensator keramik begitu juga cara menghitung nilainya. Bentuknya persegi empat seperti permen. Biasanya mempunyai warna merah, hijau, coklat dan sebagainya.
Kondensator kertas ini sering disebut juga kondensator padder. Misal pada radio dipasang seri dari spul osilator ke variabel condensator. Nilai kapasitas yang dipakai pada sirkuit oscilator antara lain:
  • Kapasitas 200 pF - 500 pF untuk daerah gelombang menengah (Medium Wave / MW) = 190 meter - 500 meter.
  • Kapasitas 1.000 pF - 2.200 pF untuk daerah gelombang pendek (Short Wave / SW) SW 1 = 40 meter - 130 meter.
  • Kapasitas 2.700 pF - 6.800 pF untuk daerah gelombang SW 1, 2, 3 dan 4, = 13 meter - 49 meter.
Nilai kapasitasnya ada yang tertulis langsung ada juga ada pula yang memakai kode warna.
Gambar dibawah salah satu jenis dari Kondensator Kertas:

Table Perkalian Kondensator Kertas

Warna Nomor Faktor Perkalian Toleransi Voltase maksimum
Hitam 0 ×1 ±20%  
Coklat 1 ×101   100V
Merah 2 ×102   250V
Jingga 3 ×103   250V
Kuning 4 ×104   400V
Hijau 5 ×105   400V
Biru 6     630V
Ungu 7     630V
Abu-abu 8     630V  
Putih 9   ±10% 630V

Kondensator elektrolit

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Bermacam-macam bentuk Kondensator elektrolit (Electrolytic Condenser)
Kondensator elektrolit atau Electrolytic Condenser (sering disingkat Elco) adalah kondensator yang biasanya berbentuk tabung, mempunyai dua kutub kaki berpolaritas positif dan negatif, ditandai oleh kaki yang panjang positif sedangkan yang pendek negatif atau yang dekat tanda minus ( - ) adalah kaki negatif. Nilai kapasitasnya dari 0,47 µF (mikroFarad) sampai ribuan mikroFarad dengan voltase kerja dari beberapa volt hingga ribuan volt.
Berbagai macam lambang gambar untuk Kapasitor Elektrolit pada skema elektronika :
Polarized capacitor symbol alternative.svg
Polarized capacitor symbol 2.svg
Polarized capacitor symbol 3.svg
Polarized capacitor symbol 4.svg
Elektrolytkondensator.JPG
Tampak pada gambar diatas polaritas negatif pada kaki Kondensator Elektrolit.
Selain kondensator elektrolit yang mempunyai polaritas pada kakinya, ada juga kondensator yang berpolaritas yaitu kondensator solid tantalum.
Kerusakan umum pada kondensator elektrolit di antaranya adalah:
  • Kering (kapasitasnya berubah)
  • Konsleting
  • Meledak, yang dikarenakan salah dalam pemberian tegangan positif dan negatifnya, jika batas maksimum voltase dilampaui juga bisa meledak.

Kondensator variabel

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Varian kondensator.
Kondensator variabel dan trimmer adalah jenis kondensator yang kapasitasnya bisa diubah-ubah. Kondensator ini dapat berubah kapasitasnya karena secara fisik mempunyai poros yang dapat diputar dengan menggunakan obeng.

Kondensator variabel

Kondensator variabel terbuat dari logam, mempunyai kapasitas maksimum sekitar 100 pF (pikoFarad) sampai 500 pF (100pF = 0.0001µF).
Kondensator variabel dengan spul antena dan spul osilator berfungsi sebagai pemilih gelombang frekuensi tertentu yang akan ditangkap.
Variable capacitor symbol 2.svg Lambang gambar untuk Kondensator Variable pada skema elektronika

Kondensator trimer

Sedangkan kondensator trimer dipasang paralel dengan variabel kondensator berfungsi untuk mengatur pemilihan gelombang frekuensi tersebut.
Kondensator trimer mempunyai kapasitas di bawah 100 pF (pikoFarad).
Lambang gambar untuk Kondensator Trimer pada skema elektronika:
Trimmer capacitor symbol GOST.svg

Kerusakan umumnya terjadi jika:
  1. Korsleting
  2. Setengah korsleting (penangkapan gelombang pemancar menjadi tidak normal)

Komponen elektronik

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Beberapa komponen elektronika dari sekian banyak yang telah tercipta karena adanya teknologi yang lebih maju
Komponen elektronika biasanya sebuah alat berupa benda yang menjadi bagian pendukung suatu rangkaian elektronik yang dapat bekerja sesuai dengan kegunaannya. Mulai dari yang menempel langsung pada papan rangkaian baik berupa PCB, CCB, Protoboard maupun Veroboard dengan cara disolder atau tidak menempel langsung pada papan rangkaian (dengan alat penghubung lain, misalnya kabel).
Komponen elektronika ini terdiri dari satu atau lebih bahan elektronika, yang terdiri dari satu atau beberapa unsur materi dan jika disatukan, dipanaskan, ditempelkan dan sebagainya akan menghasilkan suatu efek yang dapat menghasilkan suhu atau panas, menangkap atau menggetarkan materi, mengubah arus, tegangan, daya listrik dan lainnya.

Pencampuran bahan dasar

Agar semakin baik, bahan-bahan elektronika tersebut juga harus semakin memiliki kesempurnaan dalam mengolah atau mencampurkannya. Namun ada beberapa bahan elektronika yang jika dicampur tidak terbaur dengan sempurna, karena disebabkan kedua bahan tersebut mempunyai perbedaan senyawa atau materi.
Sedangkan para ilmuwan mengetahui bahwa jika bahan-bahan tersebut dapat tercampur atau dikombinasikan dengan lebih baik maka akan menghasilkan bahan-bahan elektronika baru yang lebih akurat, lebih baik serta lebih kecil ukurannya sehingga memenuhi karateristik komponen elektronika untuk masa depan yang lebih canggih. Misalnya dengan campuran yang sedikit saja sesama bahan-bahan dasar tersebut, sudah dapat bekerja dan memiliki kemampuan yang lebih baik daripada komponen-komponen sebelumnya. Sehingga bahan-bahan dasar tersebut dapat digabungkan terus-menerus antara bahan yang satu dengan bahan lainnya namun tetap mengacu kepada ukuran yang lebih kecil seperti yang diinginkan para ilmuwan elektronika pada abad ini.

Teknologi ruang angkasa

Namun untuk mencampurkan bahan-bahan dasar elektronika tadi secara lebih baik agar dapat menghasilkan komponen yang lebih canggih kemampuannya sangatlah sulit, inilah yang menjadi sebuah tantangan untuk ilmuwan ahli fisika dan kimia dewasa ini. Para ilmuwan mengetahui bahwa gaya gravitasi adalah salah satu faktor penghalang materi, atom ataupun molekul tersebut untuk menyatu. Maka para ilmuwan pada zaman modern ini mulai memandang ke angkasa dan melirik pada pesawat luar angkasa.
Akhirnya, zaman ruang angkasa dimulai, teknologi elektronika dewasa ini telah memerlukan pesawat ulang alik. Dengan pesawat itu pula dapat mengantarkan para astronot menuju stasiun luar angkasa selain itu disana mereka juga dapat bekerja lebih leluasa. Dengan keadaan tanpa bobot atau tanpa grafitasi itulah ternyata bahan-bahan elektronika semakin mudah untuk dicampur dengan hasil yang lebih sempurna. Dewasa ini banyak ditemukan bahan-bahan elektronika yang pada saat tidak ada gravitasi di ruang angkasa dapat tercampur dengan lebih baik dan lebih mudah, tidak seperti pada saat di bumi. Setelah tercampur lalu bahan-bahan tersebut dibawa kembali ke Bumi untuk kemudian diproses lebih lanjut.
Maka dengan semakin majunya perkembangan teknologi dari tahun ke tahun bahkan dari hari ke hari, komponen elektronika tersebut juga menjadi semakin canggih dibanding hasil buatan sebelumnya dan tetap mengusahakan ukuran yang semakin kecil baik dari segi bentuk maupun fisiknya serta mulai merambah pula kepada teknologi nano (nano technology).


Cara Kerja Kapasitor

ads Cara Kerja Kapasitor
Sekilas kita kembali ke hal dasar yaitu tentang Cara kerja kapasitor. Kapasitor adalah komponen elektronika yang dapat menyimpan muatan listrik. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik.
Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki (elektroda) metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi.
Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif, karena terpisah oleh bahan dielektrik yang non-konduktif.
bagian dalam kapasitor Cara Kerja Kapasitor

cara kerja kapasitor Cara Kerja Kapasitor
Muatan elektrik ini “tersimpan” selama tidak ada konduksi pada ujung-ujung kakinya. Di alam bebas, phenomena kapasitor ini terjadi pada saat terkumpulnya muatan-muatan positif dan negatif di awan. Itu merupakan gambaran singkat mengenai bagaimana Cara kerja kapasitor.
Kapasitansi
Kapasitansi didefenisikan sebagai kemampuan dari suatu kapasitor untuk dapat menampung muatan elektron. Coulombs pada abad 18 menghitung bahwa 1 coulomb = 6.25 x 1018 elektron. Kemudian Michael Faraday membuat postulat bahwa sebuah kapasitor akan memiliki kapasitansi sebesar 1 farad jika dengan tegangan 1 volt dapat memuat muatan elektron sebanyak 1 coulombs. Dengan rumus dapat ditulis :
Q = CV …………….(1)
Q = muatan elektron dalam C (coulombs)
C = nilai kapasitansi dalam F (farads)
V = besar tegangan dalam V (volt)
Untuk rangkain elektronik praktis, satuan farads adalah sangat besar sekali. Umumnya kapasitor yang ada di pasar memiliki satuan uF (10-6 F), nF (10-9 F) dan pF (10-12 F). Konversi satuan penting diketahui untuk memudahkan membaca besaran sebuah kapasitor. Misalnya 0.047uF dapat juga dibaca sebagai 47nF, atau contoh lain 0.1nF sama dengan 100pF.
Tipe Kapasitor
Kapasitor terdiri dari beberapa tipe, tergantung dari bahan dielektriknya. Untuk lebih sederhana dapat dibagi menjadi 3 bagian, yaitu kapasitor electrostatic, electrolytic dan electrochemical.
Kapasitor Electrostatic
Kapasitor electrostatic adalah kelompok kapasitor yang dibuat dengan bahan dielektrik dari keramik, film dan mika. Keramik dan mika adalah bahan yang popular serta murah untuk membuat kapasitor yang kapasitansinya kecil. Tersedia dari besaran pF sampai beberapa uF, yang biasanya untuk aplikasi rangkaian yang berkenaan dengan frekuensi tinggi. Termasuk kelompok bahan dielektrik film adalah bahan-bahan material seperti polyester (polyethylene terephthalate atau dikenal dengan sebutan mylar), polystyrene,
polyprophylene, polycarbonate, metalized paper dan lainnya.
Mylar, MKM, MKT adalah beberapa contoh sebutan merek dagang untuk kapasitor dengan bahan-bahan dielektrik film. Umumnya kapasitor kelompok ini adalah non-polar.
kapasitor elektrolit 300x300 Cara Kerja Kapasitor
Kapasitor Electrolytic
Kelompok kapasitor electrolytic terdiri dari kapasitor-kapasitor yang bahan dielektriknya adalah lapisan metal-oksida.Umumnya kapasitor yang termasuk kelompok ini adalah kapasitor polar dengantanda + dan – di badannya. Mengapa kapasitor ini dapat memiliki polaritas, adalah karena proses pembuatannya menggunakan elektrolisa sehingga terbentuk kutup positif anoda dan kutup negatif katoda.
kapasitor elco Cara Kerja Kapasitor
Telah lama diketahui beberapa metal seperti tantalum, aluminium, magnesium, titanium, niobium, zirconium dan seng (zinc) permukaannya dapat dioksidasi sehingga membentuk lapisan metal-oksida . contoh dari kapasitor ini yaitu Elco / kondensator.
Lapisan oksidasi ini terbentuk melalui proses elektrolisa, seperti pada proses penyepuhan emas. Elektroda metal yang dicelup kedalam larutan electrolit (sodium borate) lalu diberi tegangan positif (anoda) dan larutan electrolit diberi tegangan negatif (katoda). Oksigen pada larutan electrolyte terlepas dan mengoksidai permukaan plat metal. Contohnya, jika digunakan Aluminium, maka akan terbentuk lapisan Aluminium-oksida (Al2O3) pada permukaannya.
Dengan demikian berturut-turut plat metal (anoda), lapisan-metal-oksida dan electrolyte(katoda) membentuk kapasitor. Dalam hal ini lapisan-metal-oksida sebagai dielektrik. Lapisan metal-oksida ini sangat tipis,sehingga dengan demikian dapat dibuat kapasitor yang kapasitansinya cukup besar. Karena alasan ekonomis dan praktis, umumnya bahan metal yang banyak digunakan adalah aluminium dan tantalum. Bahan yang paling banyak dan murah adalah Aluminium. Untuk mendapatkan permukaan yang luas, bahan plat Aluminium ini biasanya digulung radial. Sehingga dengan cara itu dapat diperoleh kapasitor yang kapasitansinya besar.
Sebagai contoh 100uF, 470uF, 4700uF dan lain-lain, yang sering juga disebut kapasitor elco. Bahan electrolyte pada kapasitor Tantalum ada yang cair tetapi ada juga yang padat. Disebut electrolyte padat, tetapi sebenarnya bukan larutan electrolit yang menjadi elektroda negatif-nya, melainkan bahan lain yaitu manganese-dioksida. Dengan demikian kapasitor jenis ini bisa memiliki kapasitansi yang besar namun menjadi lebih ramping dan mungil. Selain itu karena seluruhnya padat, maka waktu kerjanya (lifetime) menjadi lebih tahan lama.
Kapasitor tipe ini juga memiliki arus bocor yang sangat kecil Jadi dapat dipahami mengapa kapasitor Tantalum menjadi relatif mahal.

Kapasitor Electrochemical
Satu jenis kapasitor lain adalah kapasitor electrochemical. Termasuk kapasitor jenis ini adalah
batere dan accu. Pada kenyataanya batere dan accu adalah kapasitor yang sangat baik, karena memiliki kapasitansi yang besar dan arus bocor (leakage current) yang sangat kecil. Tipe kapasitor jenis ini juga masih dalam pengembangan untuk mendapatkan kapasitansi yang besar namun kecil dan ringan, misalnya untuk applikasi mobil elektrik dan telepon selular.
Kapasitor Electrochemical Satu jenis kapasitor lain adalah kapasitor electrochemical. Termasuk kapasitor jenis ini adalah batere dan accu. Pada kenyataanya batere dan accu adalah kapasitor yang sangat baik, karena memiliki kapasitansi yang besar dan arus bocor (leakage current) yang sangat kecil. Tipe kapasitor jenis ini juga masih dalam pengembangan untuk mendapatkan kapasitansi yang besar namun kecil dan ringan, misalnya untuk applikasi mobil elektrik dan telepon selular.
Toleransi Kapasitor
Seperti komponen lainnya, besar kapasitansi nominal ada toleransinya. Tabel dibawah menyajikan nilai toleransi dengan kode-kode angka atau huruf tertentu.
nilai toleransi kapasitor Cara Kerja Kapasitor
Dengan table ini pemakai dapat dengan mudah mengetahui toleransi kapasitor yang biasanya tertera menyertai nilai nominal kapasitor. Misalnya jika tertulis104 X7R, maka kapasitasinya adalah 100nF dengan toleransi +/-15%. Sekaligus diketahui juga bahwa suhu kerja yang direkomendasikan adalah antara -55C sampai+125C, perhitungan yang mudah bukan. Secara praktek bila kita mencari nilai toleransi sebuah kapasitor yang lebih kecil maka harganya akan lebih mahal juga.
Demikian posting ini tentang Cara kerja kapasitor di posting lain akan dijelaskan bagaimana cara membaca nilai pada kapasitor semoga bermanfaat.
Related Words :
Kapasitor,cara kerja kapasitor,gambar kapasitor,cara membaca kapasitor,jenis-jenis kapasitor,kapasitor polar,kapasitor elektrolit,cara kerja elco,kapasitor tantalum,cara kerja capasitor

Read more: http://www.infoservicetv.com/cara-kerja-kapasitor.html#ixzz1eR9dEzX2

Cara Membaca nilai Kapasitor

ads Cara Membaca nilai Kapasitor
Membaca Nilai Kapasitor memang tidak sesulit membaca nilai pada resistor, namun Cara Membaca nilai kapasitor juga wajib kita ketahui untuk mengetahui karakteristik dan spesifikasinya bilamana terjadi kerusakan pada rangkaian.
Pada kapasitor yang berukuran besar, nilai kapasitansi umumnya ditulis dengan angka yang jelas. Lengkap dengan nilai tegangan maksimum dan polaritasnya.
Misalnya pada kapasitor elco dengan jelas tertulis kapasitansinya sebesar 22uF/25v.
Kapasitor keramik yang ukuran fisiknya mungil dan kecil biasanya hanya bertuliskan 2 (dua) atau 3 (tiga) angka saja. Jika hanya ada dua angka satuannya adalah pF (pico farads). Sebagai contoh, kapasitor yang bertuliskan dua angka 47, maka kapasitansi kapasitor tersebut adalah 47 pF.
kapasitor keramik1 Cara Membaca nilai KapasitorJika ada 3 digit, angka pertama dan kedua menunjukkan nilai nominal, sedangkan angka ke-3 adalah faktor pengali. Misalnya seperti gambar disamping yaitu menunjukkan 154 berarti angka pertama dan kedua menunjukkan nilai yaitu 15 dan angka ketiga angka 4 yang berarti faktor pengali= 10000, nilai kapasitor keramik tersebut adalah 15×10000=150000 pF=150 nF=0,15uF , berikut adalah tabel pengali nilai kapasitor :
Angka ke-3Pengali/Multiplier (dua digit pertama memberi Anda nilai di Pico-Farads)
01
110
2100
31,000
410,000
5100,000
6 not used
7 not used
8.01
9.1
Pada beberapa jenis kapasitor ada juga yang menggunakan toleransi yang biasanya menggunakan kode huruf :
Simbol hurufToleransi
D+/- 0.5 pF
F+/- 1%
G+/- 2%
H+/- 3%
J+/- 5%
K+/- 10%
M+/- 20%
P+100% ,-0%
Z+80%, -20%
Faktor pengali sesuai dengan angka nominalnya, berturut-turut 1 = 10, 2 = 100, 3 = 1.000, 4 = 10.000 dan seterusnya. Misalnya pada kapasitor keramik tertulis 104, maka kapasitansinya adalah 10 x 10.000 = 100.000pF atau = 100nF. Contoh lain misalnya tertulis 222, artinya kapasitansi kapasitor tersebut adalah 22 x 100 = 2200 pF = 2.2 nF.
Selain dari kapasitansi ada beberapa karakteristik penting lainnya yang perlu diperhatikan. Biasanya spesifikasi karakteristik ini disajikan oleh pabrik pembuat didalam datasheet. Berikut ini adalah beberapa spesifikasi penting tersebut.
kode kapasitor Cara Membaca nilai Kapasitor
kapasitas kapasitor Cara Membaca nilai Kapasitor
Tegangan Kerja (working voltage)
Tegangan kerja adalah tegangan maksimum yang diijinkan sehingga kapasitor masih dapat bekerja dengan baik. Para elektro- mania barangkali pernah mengalami kapasitor yang meledak karena kelebihan tegangan. Misalnya kapasitor 10uF 25V, maka tegangan yang bisa diberikan tidak boleh melebihi 25 volt dc. Umumnya kapasitor-kapasitor polar bekerja pada tegangan DC dan kapasitor non-polar bekerja pada tegangan AC.
Temperatur Kerja Kapasitor
Nilai yang ditunjukkan pada baan kapasitor masih memenuhi spesifikasinya jika bekerja pada suhu yang sesuai. Pabrikan pembuat kapasitor umumnya membuat kapasitor yang mengacu pada standar popular. Ada 4 standar popular yang biasanya tertera di badan kapasitor seperti C0G (ultra stable), X7R (stable) serta Z5U dan Y5V (general purpose).
Pada sebagian besar rangkaian TV biasanya jika terjadi kerusakan terhadap satu nilai di kapasitor maka kapasitor tersebut bisa diganti ke nilai yang lebih besar atau paling tidak mendekati nilai asli, namun tidak semua kapasitor bisa diganti dengan pengganti yang berbeda nilai, biasanya di bagian osilator. Seperti misalnya kapasitor pada Osilator Power Supply yang biasanya mempunyai nilai 22-47uF hendaknya diganti dengan nilai persis dengan yang asli, karena nilai tersebut tentu saja berpengaruh terhadap tegangan output yang dihasilkan ( berpengaruh pada kerja osilator supply). Demikian artikel tentang Cara Membaca nilai kapasitor. Semoga Bermanfaat, Lihat juga cara kerja kapasitor di artikel Cara Kerja Kapasitor
dari berbagai sumber
Related Words :
kapasitor keramik,cara membaca nilai kapasitor,nilai kapasitor,kondensator keramik,membaca nilai kapasitor,cara baca kapasitor,kapasitor elco,nilai capasitor,kapasitor non polar,membaca kapasitor

Read more: http://www.infoservicetv.com/cara-membaca-nilai-kapasitor.html#ixzz1eRA0UvRG





Klik gambar untuk melihat gambar lebih besar.
membaca nilai resistor Tabel Kode Warna Resistor

Bila kita lihat resistor paling atas pada gambar yang memiliki 4 pita warna, warna yang terdapat pada resistor yaitu :
Merah – Hijau – Orange – Emas
Warna ini bila disesuaikan dengan tabel yang ada di atas berarti :
2 – 5 – 3 – 5%
Dan ini artinya, angka pertama berarti 2, angka kedua adalah 5 sedangkan angka ketiga sebagai pengali adalah 3 yang berarti memiliki 3 angka 0 ( 000 ) Sehingga nilai resistor tersebut adalah :
25000 Ohm atau 25K Ohm dengan toleransi 5% yaitu
25000 x 5% = 1250 ohm atau 1.25K ohm
Hambatan tertinggi = Nilai resistor + nilai toleransi
Hambatan terendah = Nilai resistor – nilai toleransi
Berdasarkan rumus diatas berarti hambatan tertinggi adalah 26.25K ohm dan hambatan terendah adalah 23.75K ohm yang artinya resistor tersebut memiliki rentang hambatan dengan 26.25 – 23.75 K ohm tergantung suhu pada saat resistor tersebut bekerja.
Yang harus diingat adalah Cara pembacaan resistor diatas hanya berlaku untuk resistor dengan 4 pita warna sedangkan untuk pembacaan resistor 5 warna atau 6 warna ada sedikit modifikasi.
Yaitu Warna pertama, kedua dan ketiga menunjukkan angka nilai resistor sedangkan angka ke 4 menunjukkan faktor pengali. Bisa dilihat pada contoh gambar resistor yang kedua dengan tetap melihat nilai yang dicantumkan di gambar tabel kode warna resistor.
Related Words :
tabel,tabel gelang warna resistor,kode hambatan warna,kode warna pada resistor,resistor kode warna,rumus resistor,resistor dengan kode warna,12 warna,pengertian resistor dan tabel warna resistor,tabel kode resistor

Variasi Nilai Hambatan Pada Resistor

ads Variasi Nilai Hambatan Pada Resistor
Resistor merupakan salah satu komponen yang berfungsi sebagai pembagi / penahan arus di dalam suatu rangkaian elektronika, termasuk juga di dalamnya adalah service TV. Pada kenyataannya pada kebanyakan rangkaian elektronika, komponen resistor ini selalu merupakan komponen yang paling banyak jumlahnya.
resistor karbon Variasi Nilai Hambatan Pada ResistorResistor karbon
Mungkin bagi anda yang sudah biasa memperbaiki Televisi bisa mengira ngira bukan jumlahnya ada berapa. Pada TV ukuran 21″ saja bisa terdapat 100 – 200 komponen resistor.
Baik itu komponen resistor karbon biasa, metal film ataupun komponen SMD yang bentuknya sangat kecil ( biasa digunakan pada PC motherboard ).
konstruksi resistor karbon Variasi Nilai Hambatan Pada ResistorKonstruksi resistor karbon
Sekarang apakah anda pernah menemukan Resistor yang mempunyai nilai 450 Ohm atau 750 Ohm misalnya. Saya yakin jika anda mencari nilai kedua resistor tersebut di pasaran maka anda tidak akan pernah menemukannya. Itu karena Angka angka pada resistor sudah memiliki angka standar.
Secara teori, sebuah resistor dapat memiliki nilai apapun dari serendah mungkin (seperti batang perak padat / mendekati 0 Ohm ) ke hambatan yang tertinggi (seperti udara terbuka).
Dalam prakteknya,kita tidak bisa menemukan menemukan resistor dengan nilai kurang dari sekitar 0,1 Ohm, atau lebih dari sekitar 100 Mega Ohm.
Angka angka Resistor dibuat dalam nilai-nilai standar / baku yang mungkin pada awalnya tampak agak aneh bagi Anda. Angka standar tersebut yaitu 1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, dan 8.2, 9.1
Sehingga bila anda menginginkan nilai resistor 450 Ohm maka anda harus membeli resistor dengan angka yang bisa menjadi faktor pengali angka tersebut, yaitu 1,5. Maka anda hanya tinggal mencari resistor yang mempunyai resistansi 150 Ohm 3X dan dengan pasangan resistor secara seri anda akan mendapatkan angka 450 Ohm.
Oiya anda juga bisa mendapatkan resistansi pada angka standar diatas dengan pangkat 10.Atau dengan kata lain anda juga bisa mendapat nilai resistor 10 Ohm,100 Ohm, 1000 Ohm dan seterusnya.
Begitu juga dengan angka angka standar yang lain. Nilai tersebut biasanya digunakan pada resistor karbon dan memiliki toleransi resistansi sebesar 5%.
Pada dasarnya semua harga resistansi yang anda butuhkan pada suatu rangkaian bisa didapat dari kombinasi angka standar. Tentu saja dibarengi dengan pemasangan yang bervariasi bisa dalam bentuk pasangan resistor seri ataupun paralel.
Selain angka standar diatas sebenarnya ada juga angka lainnya. Apakah anda pernah membuka / memperbaiki AVOmeter milik anda, jika anda memperhatikan resistor yang dipasang di rangkaian AVOmeter tersebut maka nilainya akan terlihat janggal. Ada yang 300 Ohm , 700 Ohm bahkan saya pernah menemukan nilai resistansi 200 Ohm.
Nilai resistansi yang digunakan pada rangkaian seperti itu biasanya adalah resistor jenis Metal Film dan biasanya memiliki toleransi resistansi yang lebih kecil yaitu 1% sehingga lebih presisi. Dan hanya digunakan pada rangkaian tertentu saja. Untuk pada rangkaian televisi sendiri jarang digunakan.
Resistor metal film Variasi Nilai Hambatan Pada Resistor
Resistor Metal Film
konstruksi resistor film Variasi Nilai Hambatan Pada Resistor
Konstruksi Resistor Metal Film
Lalu bagaimana cara kita menghapal nilai resistansi…… ?? Anda tidak perlu menghafal angka-angka ini. Mereka akan menjadi cukup akrab dari waktu ke waktu, saat Anda bekerja dengan listrik dan sirkuit elektronik.
Ok sekian posting kali ini tentang variasi nilai resistor, seperti biasa jika ada yang ingin menambahkan atau menyanggah silahkan tinggalkan komentar anda.
Related Words :
resistor,nilai resistor,jenis resistor,cara kerja resistor,artikel resistor,komponen resistor,nilai resistor di pasaran,nilai hambatan,resistor karbon,nilai resistansi

Read more: http://www.infoservicetv.com/variasi-nilai-hambatan-pada-resistor.html#ixzz1eRB2cwAY